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Abstract

The number of mitoses per tissue area gives an impor-
tant aggressiveness indication of the invasive breast car-
cinoma. However, automatic mitosis detection in histol-
ogy images remains a challenging problem. Traditional
methods either employ hand-crafted features to discrim-
inate mitoses from other cells or construct a pixel-wise
classifier to label every pixel in a sliding window way.
While the former suffers from the large shape variation
of mitoses and the existence of many mimics with sim-
ilar appearance, the slow speed of the later prohibits
its use in clinical practice. In order to overcome these
shortcomings, we propose a fast and accurate method to
detect mitosis by designing a novel deep cascaded con-
volutional neural network, which is composed of two
components. First, by leveraging the fully convolutional
neural network, we propose a coarse retrieval model to
identify and locate the candidates of mitosis while pre-
serving a high sensitivity. Based on these candidates,
a fine discrimination model utilizing knowledge trans-
ferred from cross-domain is developed to further single
out mitoses from hard mimics. Our approach outper-
formed other methods by a large margin in 2014 ICPR
MITOS-ATYPIA challenge in terms of detection accu-
racy. When compared with the state-of-the-art methods
on the 2012 ICPR MITOSIS data (a smaller and less
challenging dataset), our method achieved comparable
or better results with a roughly 60 times faster speed.

Introduction

Breast cancer is the most common cancer among women
and a major cause of death worldwide (Boyle, Levin, and
others 2008). According to the Nottingham Grading Sys-
tem, which is recommended by the World Health Organi-
zation for breast cancer screening (Elston and Ellis 1991),
three morphological features in histology sections, includ-
ing tubule formation, nuclear pleomorphism and the number
of mitotic figures, are critical for the assessment of breast
cancer. Among them, the number of mitoses gives an im-
portant aggressiveness indicator of the invasive breast car-
cinoma and hence is of great significance in diagnosis and
treatment. However, the manual annotation by histologists is
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Figure 1: Example of mitoses and mimics (green rectan-
gle encloses the true mitoses and red rectangle encloses the
mimics that carry similar appearance).

time-consuming and subjective with limited reproducibility.
To this end, the development of automatic detection meth-
ods is essential for improving the efficiency and reliability
of pathological examination.

However, automatic mitosis detection in breast histology
images is a very challenging task for several reasons. First,
the mitosis is characterized by a large variety of shape con-
figurations, which are related to the high variation of bio-
logical structures, as shown in the green rectangle in Fig-
ure 1. In addition, the development of mitosis can be di-
vided into four main phases: prophase, metaphase, anaphase
and telophase. In different phases, the shape of nucleus
is quite different, which further complicates the detection
task. For instance, a mitotic cell has two distinct nuclei in
the telophase, but they are not yet full individual cells. In
this case, it must be counted as one single mitosis. Sec-
ond, other cell types (e.g., apoptotic cells) usually carry
similar morphological appearance with mitosis (as shown
in the red rectangle in Figure 1), resulting in lots of false
positives in the detection process. Third, the different con-
ditions of histology image acquisition process, including
sampling, cutting, staining, and digitalizing, increase the
variabilities of mitosis appearance (Cruz-Roa et al. 2011;
Veta et al. 2014). This is common when the tissue samples
are acquired from different patients or at different time slots.
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In recent years, several automatic methods have been
developed to detect mitoses from breast histology im-
ages. Early studies employed hand-crafted features that cap-
ture specific characteristics of mitosis for automatic detec-
tion (Sommer et al. 2012; Khan, El-Daly, and Rajpoot 2012;
Irshad 2013; Veta, van Diest, and Pluim 2013; Malon and
Cosatto 2013; Wang et al. 2014; Tek 2013). However, these
methods often suffer from the large shape variations of mi-
tosis. In addition, the mimics with similar appearance are
usually mistakenly recognized as mitoses by utilizing these
features. In a recent study (Cireşan et al. 2013), researchers
proposed to detect mitosis by applying deep convolutional
neural networks (CNN), which can learn high-level feature
representations in a data driven way, and achieved a higher
detection accuracy than other methods. This method con-
structed a pixel-wise classifier based on CNN, which is quite
computationally demanding and time-consuming. This pro-
hibits its use in clinical practice. Another factor that may
degrade the performance of the current CNN-based detec-
tion methods is the insufficiency of training samples, which
may cause overfitting during the training process.

To overcome these shortcomings of previous methods,
we propose a fast and accurate method to detect mitosis by
designing a novel deep cascaded neural network (CasNN),
which is composed of two models. First, by leveraging the
fully convolutional network (FCN), we present a coarse re-
trieval model to identify and locate the candidates of mito-
sis. The proposed retrieval model can retrieve mitosis candi-
dates efficiently on the whole sliding image while preserv-
ing a high sensitivity. Based on these candidates, a fine dis-
crimination model is developed to further single out mito-
sis from hard mimics. As we reduce the search range from
the whole image to the candidates only, the cascaded model
can detect the mitoses in a common histology image within
0.5 seconds, around 60 times faster than the state-of-the-art
method (Cireşan et al. 2013). To reduce the overfitting prob-
lem caused by the limited number of training samples and
hence further improve the detection accuracy, the fine dis-
crimination model transfers deep and rich feature hierarchies
learned from a large number of cross-domain images, then
fine tuned on the mitosis detection task. We evaluated our
method on two public available datasets. Our method outper-
formed other competitors in 2014 ICPR MITOS-ATYPIA
challenge by a large margin in terms of detection accuracy.
When compared with the state-of-the-art methods on the
2012 ICPR MITOSIS data, which is much smaller and less
challenging than the dataset in 2014 ICPR MITOS-ATYPIA
challenge, our method achieved a comparable or better de-
tection performance with a much faster speed.

Related Work
Studies for automatic detection of mitosis on hematoxylin
and epsin (H&E) stained biopsies began thanks to the in-
troduction of scanners for whole slide imaging (WSI) on
glass slides. Previous studies applied domain-specific hand-
crafted features to describe the morphological, statistical
or textural characteristics of mitosis (Sommer et al. 2012;
Khan, El-Daly, and Rajpoot 2012; Irshad 2013; Malon and
Cosatto 2013; Wang et al. 2014; Tek 2013). Some of them

combined two or more such features in order to improve the
detection accuracy. For example, Sommer et al. (2012) con-
structed a pixel-wise classifier with shape and texture fea-
tures to detect mitotic cells from histology images. Irshad
et al. (2013) proposed a framework that included compre-
hensive analysis of statistics and morphological features for
mitosis detection by employing a decision tree classifier.
Tek (2013) classified mitotic and non-mitotic regions by us-
ing generic features and an ensemble of cascade adaboosts.
However, these hand-crafted features require considerable
efforts to design and validate. Furthermore, they cannot suf-
ficiently represent the characteristics of mitoses with a large
variation of shapes and textures, therefore resulting in a low
detection accuracy.

Compared with methods based on hand-crafted features,
the deep CNN with hierarchical feature representation learn-
ing has made breakthroughs in object recognition related
problems (Krizhevsky, Sutskever, and Hinton 2012; Szegedy
et al. 2014; Simonyan and Zisserman 2014; Chen et al.
2015c). As for mitosis detection, Ciresan et al. utilized a
deep CNN as a pixel-wise classifier to detect mitosis and
achieved the best performance at 2012 ICPR MITOSIS chal-
lenge with F1 score 78.2% (Cireşan et al. 2013) and 61.1%
at 2013 MICCAI challenge (Veta et al. 2014), respectively.
We consider this method as the state-of-the-art. However,
the pixel-wise classifier of deep CNN is computationally de-
manding and time-consuming. Considering a single whole
slide that consists of thousands of high-power fields (HPFs),
it takes a long time to run across all sub-windows for detec-
tion, which may prohibit its use in clinical practice. In this
regard, a novel model supporting fast and accurate mitosis
detection simultaneously is demanded.

In recent years, several public datasets of breast cancer
histology images have been available for algorithm assess-
ment, e.g., the MITOSIS contest at ICPR 2012 (Roux et al.
2013), the AMIDA13 contest at MICCAI 2013 (Veta et al.
2014), and MITOS-ATYPIA challenge at ICPR 2014 with
extensively enlarged data and partial pathological agreement
considered. In our experiments, we conducted extensive ex-
periments on the ICPR 2012 and 2014 challenge datasets.

Method
Figure 2 shows the architecture of the proposed method,
which consists of two models of convolutional neural net-
works and they are combined in a cascaded manner. The first
model can quickly retrieve the mitosis candidates while pre-
serving a high sensitivity by taking the advantage of the fully
convolutional network. We call it the coarse retrieval model
Nc, which outputs a score map indicating the probability
of mitosis candidates. The retrieved candidates are fed into
the second model for further discrimination of mitoses and
mimics with similar appearance. The second model is effec-
tively constructed by transferring deep and rich feature hier-
archies trained by deep convolutional neural networks on a
large natural image dataset. We call it the fine discrimination
model Nf , which is with higher capability of feature repre-
sentation than CNN trained only on limited histopatholog-
ical images, and hence can discriminate mitoses from hard
mimics more precisely. Note that as the Nf performs only
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Figure 2: An overview of the proposed deep cascaded net-
works for fast and accurate mitosis detection.

on the candidates generated by Nc instead of the whole im-
age, the detection process can be dramatically accelerated.

Coarse Retrieval Model

Considering that mitoses are sparsely distributed in his-
tology images, a step of retrieving the regions of inter-
est (ROI), i.e., mitosis candidates, could reduce the de-
tection time dramatically, as the subsequent detection pro-
cess could focus only on the candidates. Previous studies
obtained the mitosis candidates relying on the pre-defined
measurements on domain-specific morphological textures,
color ratios or histogram distribution (Sommer et al. 2012;
Irshad 2013; Malon and Cosatto 2013; Wang et al. 2014;
Tek 2013). However, these methods were prone to los-
ing mitoses, as these hand-crafted features could not accu-
rately describe the complicated characteristics of mitoses.
Recently, there were studies that explored the fast scan-
ning approach with deep max-pooling convolutional neu-
ral networks for the mitosis detection (Giusti et al. 2013;
Cireşan et al. 2013). Although these methods are more accu-
rate than previous studies based on low-level features, they
are computation-intensive and time-consuming in a pixel-
wise classification way.

Different from previous methods, we utilize a fully con-
volutional network (FCN) (Ofer Matan and Denker 1991;
Long, Shelhamer, and Darrell 2014) for fast retrieving the
mitosis candidates. Traditional CNN contains the convolu-
tional (C), sub-sampling, e.g., max-pooling (M), and fully-
connected (FC) layers. Both C and M layers are transla-
tion invariant and can be operated on input of arbitrary size.
However, the introduction of FC layers requires the input
with a fixed size, as shown following:

hl
j = σ(W l

jh
l−1 + blj) (1)

where W l
j is the weight matrix connecting the neurons hl−1

in (l − 1)th FC layer and jth index neuron hl
j in the lth FC

layer, blj is the bias and σ(·) is the element-wise non-linear
activation function. In fact, the fully connected layers are

Table 1: The architecture of coarse retrieval model Nc

Layer Feature maps Kernel size Stride

Input 94x94x3 - -
C1 90x90x32 5 1
M1 30x30x32 3 3
C2 28x28x32 3 1
M2 14x14x32 2 2
C3 12x12x32 3 1
M3 6x6x32 2 2
FC4 100 - -
FC5 2 - -

equivalent to the convolutional layers with kernel size 1×1:

hl
j = σ(

M∑

m=1

W l
jm ⊗ hl−1

m + blj) (2)

where ⊗ denotes the 2D spatial convolution, W l
jm ∈ R1×1

is the convolution kernel connected to jth feature map hl
j

and the mth feature map in the previous layer hl−1, and M
is the total number of feature maps in hl−1. By employing
Eq. (2), we can convert the fully connected layers into a fully
convolutional fashion. Once the filters have been learned,
they can be applied to the input image of arbitrary size.

The proposed coarse retrieval model has several advan-
tages. First, since the FCN can take the whole image as in-
put and generate the score mask with only one pass of for-
ward propagation, it is capable of retrieving mitosis candi-
dates efficiently on the whole sliding image instead of each
pixel while preserving a high sensitivity. Second, it can also
help to build a representative training database for the fine
discrimination model Nf . Because mitoses rarely appeared
in the whole HPF, non-mitosis training samples can be well
represented by putting the false positives from Nc into the
training samples of Nf . Thus the capability of the model
Nf in distinguishing the mitoses from the hard mimics can
be greatly enhanced by these false positives. The architec-
ture of Nc can be seen in Table 1.

Score Mask Generation The proposed coarse retrieval
model is trained on the training samples with a fixed size
input (94 × 94 × 3) by minimizing the cross entropy loss.
Once the training is done, the Nc can be converted into a
FCN model by Eq. (2). Then, the trained filters can be ap-
plied to scan the whole sliding image instead of employing
the traditional patch-by-patch manner, which speeds up the
detection process dramatically. Hence, the score mask indi-
cating probability of mitosis candidates can be obtained after
running through the converted coarse retrieval model only
once. Each position of the output score mask corresponds to
a specific region (size 94 × 94) in the original HPF image.
Actually, it is equivalent to scanning the whole slide image
with a fixed stride, which is determined largely by the stride
of max-pooling layers. We will detail this in the following
section.
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Mitosis Candidates Localization Derived from the pro-
posed model, the mitosis candidates can be located by map-
ping the index with higher scores on the score mask into
the original coordinates of input image. Assuming non-
overlapping region pooling, index mapping with convolution
and max-pooling operations is formulated as:

x̂i =
xi − ci

si
+ 1 (3)

where ci denotes the kernel size of convolutional or max-
pooling layer, x̂i is the position index after C or M operation
on xi, and si denotes the stride of convolutional or max-
pooling layer. The original position index can be obtained
by inverting above operations. For example, based on the
network architecture shown in Table 1, for each position in-
dex p̂s from the score mask, we can get the index po in the
original image as following:

po = c1 − 1 + sm1(c2 − 1) + sm1sm2(c3 − 1)

+sm1sm2sm3 p̂s = p0 + sp̂s (4)

where p0 = 22 and s = 12 according to the architec-
ture in Table 1. Thus we can retrieve the mitosis candidates
with a sparse distribution based on the above index map-
ping. This is quite efficient when the detected objects are
rarely distributed as in the case of mitosis detection. De-
spite with max-pooling layers, the probability maps can give
quite dense predictions considering the equivalent stride 12
compared with the image size 2048 × 2048. Therefore, this
approach can efficiently retrieve the candidates with a high
sensitivity while reducing the computational workload. Sub-
sequently, mitosis candidates are input into the deep discrim-
ination model Nf for fine classification after local smooth-
ing and non-max suppression.

Fine Discrimination Model

Knowledge Transfer across Domains The deep CNN with
powerful feature representation achieved remarkable perfor-
mance on recognition related tasks with large scale train-
ing resources available. However, limited datasets in medi-
cal applications, such as mitosis detection in breast histol-
ogy images, increase the difficulties for training a powerful
model to discriminate objectives from their mimics. The sit-
uation is further deteriorated when there exist lots of false
positives with similar appearance. Although various trans-
formations (e.g., translation, rotation, scaling, etc.) could be
used to augment the training database, the training samples
may be still insufficient to train a powerful model. Further
improvement can be obtained with the help of transferring
knowledge learned from related auxiliary tasks, where the
training data can be easily acquired. Previous studies in-
dicated that the filters (i.e., prior knowledge for recogni-
tion tasks) trained on large scale images of ImageNet (Rus-
sakovsky et al. 2014) could be transferred to different ap-
plications in other domains empirically (Jia et al. 2014;
Yosinski et al. 2014; Chen et al. 2015b; Gupta, Ayhan, and
Maida 2013; Chen et al. 2015a). Although medical and
natural images are two different modalities and high level
abstraction information is distinct, they do share statisti-
cal strength in low level details, e.g., orientation edges and

Table 2: Number of HPFs/mitoses using Scanner Aperio-XT

Dataset (HPFs/mitoses) ICPR 2012 ICPR 2014

Training data 35/226 1200/749
Testing data 15/100 496/NA

junctions. Ideally, transfer learning from related data should
somehow capture the salient factors of variation that explain
the data, and benefit the recognition related target tasks.

Therefore, we optimized the new medical task by employ-
ing an off-the-shelf model CaffeNet (Jia et al. 2014). The pa-
rameters of the previous layers (C1-C5) in the Nf were ini-
tialized by the pre-trained filters of CaffeNet model, which
was trained on large scale images of ImageNet. This process
can be considered as a pre-training phase of neural network
with good initialization. By leveraging the transfer knowl-
edge learned from large scale images, we fine tuned the Nf

on the histology images by minimizing the following cross-
entropy function:

argmin
θ

N∑

n=1

K∑

k=1

−tk log p(yk = 1|In) + λ||W ||22 (5)

where θ = {W , b} denotes the parameters of Nf , λ is the
parameter for controlling the balance between the data loss
term and the regularization term, p(yk = 1|In) is the output
probability for kth class given the input sub-window patch
In, tk is the corresponding ground truth, K and N are the
total number of classes and training samples, respectively.
In the training process, dropout method (Hinton et al. 2012)
was utilized to reduce the co-adaption of intermediate fea-
tures.

Model Averaging In order to improve robustness, we
trained multiple models of Nf for reducing the variance
and improving the robustness capability (Geman, Bienen-
stock, and Doursat 1992). Three architectures with different
number of neurons in three fully connected layers (i.e., FC6-
FC8), 1024-256-2, 1024-512-2, 512-256-2, were trained, re-
spectively. The sub-window sample was categorized as a
mitosis when its averaged output posterior probability was
above the threshold T (determined with cross-validation in
our experiments), otherwise, categorized as non-mitosis.

Experiments

Materials and Preprocessing

The datasets were obtained from the 2012 and 2014 ICPR
MITOSIS contests1. In our experiments, we evaluated our
method on the HPF images acquired by the widely-used
Apero-XT scanner. The numbers of HPF and mitoses in
these two datasets are reported in Table 2. The centroids
of mitoses were annotated by experienced pathologists. The
ground truths of 2014 ICPR testing data were held out by the
organizers for evaluation. For each dataset, we split training

1More details: http://ipal.cnrs.fr/ICPR2012/, http://mitos-
atypia-14.grand-challenge.org/
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Figure 3: Detected results by our method on the testing data of 2012 ICPR MITOSIS contest. The first row shows the results of
the coarse retrieval model and the second row shows the final detection results (cyan, yellow, blue and green circles denote the
mitosis candidates, false negatives, false positives and true positives, respectively).

Table 3: Results of 2012 ICPR MITOSIS Dataset

Method Precision Recall F1 score

UTRECHT (Veta et al. 2013) 0.511 0.680 0.584
NEC (Malon and Cosatto 2013) 0.747 0.590 0.659
SUTECH 0.699 0.720 0.709
IPAL (Irshad 2013) 0.698 0.740 0.718
DNN (Cireşan et al. 2013) 0.886 0.700 0.782
Coarse retrieval model Nc 0.211 0.891 0.342
RCasNN 0.720 0.713 0.716
CasNN(single) 0.738 0.753 0.745
CasNN(average) 0.804 0.772 0.788

data with ground truth into two sets for training and valida-
tion (about 1/7 of total training data), respectively. Patches
extracted from mitotic regions were augmented by different
transformations, including translation, rotation and flipping,
for enlarging the training database.

Qualitative Evaluation

A score mask of coarse retrieval model and its correspond-
ing retrieved candidates are shown in Figure 2. It is observed
that large scores fired on the mitotic regions of score mask,
while most of the non-mitotic regions have been suppressed
as zeros, demonstrating the effectiveness of the coarse re-
trieval model with FCN. Four typical examples on the testing
data of 2012 ICPR MITOSIS contest are shown in Figure 3.
It is observed that the tissue appearance has large variations,
which increases the difficulties for mitosis detection. Thanks
to the advantages of FCN, the coarse retrieval model can effi-
ciently retrieve the mitosis candidates while preserving most
of true mitoses. Furthermore, our fine discrimination model

can effectively get rid of most false positives from the can-
didates generated by the coarse retrieval model. There still
exist a few false positives and false negatives in the final
results. The false positives are mistakenly detected because
the appearance of them is quite similar with the true mitosis,
while the false negatives tend to be poorly stained in the tis-
sue preparation process, which indicates that the consistence
of tissue preparation is also important for accurate detection.
Despite a few false results, our method could successfully
detect most mitoses in these histology images.

Quantitative Evaluation and Comparison

According to the evaluation criteria of the MITOSIS chal-
lenges, a detection would be counted as a correct one if
its Euclidian distance to a ground truth mitosis is less than
8μm. All the detections that are not fallen within 8μm of a
ground truth are counted as false positives. All the ground
truths that do not have detections within 8μm are counted
as false negatives. We employed the following evaluation
measurements including recall: R = Ntp/(Ntp +Nfn),
precision: P = Ntp/(Ntp +Nfp) and F1 score: F1 =
2RP/(R+ P ), where Ntp, Nfp and Nfn are the number
of true positives, false positives and false negatives, respec-
tively. The ranking was made according to the overall F1-
measure, where all the annotations were considered as a sin-
gle dataset regardless to which patient they belong.

Evaluation on 2012 ICPR MITOSIS Dataset The 2012
ICPR MITOSIS dataset consists of 35 training images and
15 testing images. For the training process, we extracted a
total of 29,100 mitosis samples after augmentation. In order
to build a representative dataset for training the fine discrimi-
nation model, false positives from the coarse retrieval model
were also employed. Note that the size of training data (to-

1164



Table 4: Results of 2014 ICPR MITOSIS Dataset

Method Precision Recall F1 score

STRASBOURG - - 0.024
YILDIZ - - 0.167
MINES-CURIE-INSERM - - 0.235
CUHK - - 0.356
RCasNN 0.360 0.424 0.389
CasNN(single) 0.411 0.478 0.442
CasNN(average) 0.460 0.507 0.482
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Figure 4: Results of different slides on 2014 ICPR MITOSIS
testing data.

tal 394,275 training samples including 7.4% mitoses, 67.8%
random selected negative samples, and 24.8% false positives
from Nc) is smaller compared to the training dataset used in
the state-of-the-art method (Cireşan et al. 2013) (1 million
training instances with 6.6% as mitoses).

Although with less aggressive data augmentation, our
method achieved a competitive performance on testing data
with a much faster speed. The detailed results are reported
in Table 3. Compared to the method with the best per-
formance in 2012 ICPR contest (Cireşan et al. 2013), our
method (CasNN) with model averaging achieved a compa-
rable F1 score 0.788 and a higher recall 0.772. The single
CasNN model outperformed the randomly initialized model
(RCasNN) with respect to all the evaluation measurements,
demonstrating that the knowledge transferred from deep and
rich hierarchies can help to improve the performance. As
the organizers from 2012 ICPR MITOSIS contest indicated
that the dataset in this contest is by far too small for a good
assessment of reliability and robustness of different algo-
rithms (Roux et al. 2013), we further evaluated our method
on the 2014 ICPR MITOSIS dataset, which is a much larger
and more challenging dataset.

Evaluation on 2014 ICPR MITOSIS Dataset The
dataset from 2014 ICPR is extensively expanded includ-
ing 1200 training images and 496 testing images. One of
the most difficult challenges in this dataset is the variabil-
ity of tissue appearance, mostly resulted from the differ-
ent conditions during the tissue acquisition process. As a
result, the dataset is much more challenging than that in

2012 ICPR. The results of different methods are reported
in Table 4 (“-” denotes that the results are not released).
Our approach achieved the best performance with F1 score
0.482 outperforming other methods by a large margin. The
performance of the single CasNN model outperformed the
RCasNN model, demonstrating the efficacy of knowledge
transfer strategy consistently. The per slide results of differ-
ent methods are shown in Figure 4. It is observed that our
method (CasNN) with model averaging achieved higher F1
score than other methods on most slides. Because the vari-
ation of tissue appearance in A13 slide is extremely large,
the detection performance of different methods is very low.
In comparison, our results achieved better performance than
others.

Computation Time

In breast cancer diagnosis, a single whole slide usually con-
sists of thousands of HPFs. Hence, the processing time of
one HPF should be considered seriously in clinical appli-
cations (Veta et al. 2014). The superior advantage of the
proposed cascaded framework is that it can reduce detec-
tion time dramatically while achieving a satisfactory accu-
racy. Our system was implemented with the mixed program-
ming of MATLAB and C++. The coarse retrieval model
took about 0.45 seconds to process per 4Mpixels HPF (size
2084×2084) and the fine discrimination model with 10 input
variations cost about 0.49 seconds using a workstation with
a 2.50 GHz Intel(R) Xeon(R) E5-2609 CPU and a NVIDIA
GeForce GTX TITAN GPU. Totally, it took about 0.5 sec-
onds for each input variation and was roughly 60 times faster
than the state-of-the-art method (Cireşan et al. 2013), which
took about 31 seconds with an optimized GPU implemen-
tation. Meanwhile, our approach achieved comparable de-
tection accuracy to (Cireşan et al. 2013). This makes our
approach possible for real-world clinical applications.

Conclusion

Automatic mitosis detection from breast cancer histology
images can help to improve the efficiency and reliability
of breast cancer screening and assessment. In this paper,
we have proposed a novel deep cascaded network to tackle
this challenging task by leveraging an efficient coarse re-
trieval model and a knowledge transferred fine discrimina-
tion model. Compared to the state-of-the-art methods, the
proposed approach yielded better performance with a much
faster speed, making it more practical in clinical applica-
tions. Future investigations include assessing the proposed
method on more histology images and accelerating the algo-
rithm with GPU optimization.
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